RNAi plasmid construction using pFGC5941 (Yuan Lab)

1. Amplify insert from flower cDNA or gDNA (depending on the sequence) using Phusion PCR

Do **2** 20 μl reactions:

4 μ l 5x Phusion buffer Phusion program: 0.5 μ l 10mM dNTPs cycle 1: 98 for 0:30 0.6 μ l DMSO cycle 2: (32x) 98 for 0:10

1.0 μ l template58 for 0:20 (or ideal0.2 μ l Phusion enzymeannealing temp)

11.0 μl dH2O72 for 0:301.5 μl 5 μM primer Fcycle 3: 72 for 5:001.5 μl 5 μM primer Rcycle 4: 12 for ever

20 μl total

2. Digest insert with Ncol/Ascl and BamHI/Xbal and pFGC5941 plasmid with Ncol/Ascl

2.5 μl 10x CutSmart Buffer 2.5 μl 10x CutSmart Buffer

4.5 μl dH2O4.5 μl dH2O1.5 μl Ncol1.5 μl Xbal1.5 μl Ascl1.5 μl BamHl15 μl PCR product/plasmid15 μl PCR product

25 μl total 25 μl total

Incubate 37 degrees for 1 hour

Gel purify digests and save the BamHI/Xbal digested insert for the second ligation

3. Ligation #1

Want an insert to vector ratio of 2:1 to 6:1

2 μl linearized pFGC5941 digested with Ascl/Ncol (~175ng; adjust volume accordingly)

4 μl insert digested with Ascl/Ncol (~15-30ng)

2 μl T4 ligase buffer

1 μl T4 ligase

11 μl dH2O

20 μl total

Incubate 30 minutes at room temperature

Transform 10ul into E. coli comp cells (homemade) and plate on Kan plates

4. Colony PCR to check for first insert

Circle the biggest colonies on your plate and label them 1-8

Make a replica plate for your colonies, unless they're sufficiently space out on the original plate PCR across the first insert using primers on the vector to check for an insert:

An empty vector will give a band of 700bp (3082-2372=710)

8.0 ul dH20

1.0 µl 10x buffer

.125 μl dNTPs

0.5 μl pFGC5941 **2372 F**

0.5 μl pFGC5941 **3082 R**

0.05 μl Taq

10 μl total

Colony PCR Program:

cycle 1: 95 for 3:00

cycle 2: (32x) 95 for 0:15

55 for 0:15

72 for 1:00

cycle 3: 72 for 7:00 cycle 4: 12 for ever

5. Pick two correct colonies and inoculate into 3 mL LB+Kan broth

incubate in 37 degree shaker overnight

The next day, do a plasmid prep (mini-prep kit) with 1 of the colonies that grew well

6. Digest plasmid with BamHI/XbaI

5 μl 10x CutSmart Buffer

12 μl dH2O

1.5 µl Xbal

1.5 µl BamHI

30 μl plasmid * adjust volume based on concentration; you want 2000-5000 ng of plasmid

50 μl total

37 degrees for 1 hour

gel purify digest

7. Ligation #2

2 µl vector with the first insert, digested with BamHI/Xbal (~175ng; adjust volume accordingly)

4 μl insert digested with BamHI/XbaI (done in step 2) (want ~15-30 ng)

2 μl T4 ligase buffer

1 μl T4 ligase

<u>11 μl dH2O</u>

20 μl total

Incubate 30 minutes at room temperature

Transform 10ul into E. coli comp cells (homemade) and plate on Kan plates

Homemade TOP10 E. coli competent cells transformation:

- 1. Thaw competent cells on ice and transfer to a chilled PCR tube
- 2. Add your reaction to the cells (10ul if RNAi ligation, 3ul of LR reaction)
- 3. Incubate on ice for 5 minutes
- 4. Heat-shock cells for 45 seconds at 42°C in the PCR machine
- 5. Immediately transfer the PCR tube to ice and incubate on ice for 5 minutes
- 6. Add **900ul LB** to a labeled eppie tube
- 7. Transfer your cells to the LB and cap the tube tightly

- 8. Incubate and shake the cells at 37°C for 1 hour (tape to bottom of shaker)
- 9. Centrifuge to spin down the cells 8000rpm for 1 minute
- 10. Pipet off 700ul of the LB
- 11. Resuspend the cells in the 200ul of LB
- 12. Spread all of the cells onto a LB Kan plate (or appropriate antibiotic)
- 13. Incubate at 37°C overnight (should visibly see colonies late morning of the next day)

8. Colony PCR to check for second insert

pFGC5941 3930 F & pFGC5941 4430 R

Vector without insert will give a band of 500bp

9. Pick two correct colonies and inoculate into 3 mL LB+Kan broth

incubate in 37 degree shaker overnight Plasmid prep (mini-prep kit)

10. Check plasmid for inserts

PCR to check for both inserts: 2372F/3082R or RNAi_R (insert specific) 3930F/4430R or RNAi_F (insert specific)

11. Sequence to verify

Use 4 primers:

2372F, 3082R, 3930F, 4430R

Note: in the sequencing reaction, add DMSO to aid in the sequencing across the restriction enzyme digest sites (the chromatogram peaks usually drop off dramatically right after the digest sites; an alternative strategy is to PCR the final plasmid with 2372F&3082R for the left insert and 3930F&4430R for the right insert and then sequence the PCR product)

12. Transform into agrobacterium for infiltration